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Abstract  — The Pidar provides 3 dimensional points to a 
client that represent a 3 dimensional environment. An 
infrared laser sensor provides distance data along a Z axis 

and angular data on an x axis. A motor rotates the laser 
mechanism around a Y axis; this supplies the system with 
the necessary data in order to create a 3D point cloud 

representation of an environment. The Pidar utilizes a Linux 
operating system in order to manage the flow of information 
from the external sensors to an independent client.  

Index Terms —  Client-Server Systems, Image Generation, 
Laser Radar, Systems Software. 

 

I. INTRODUCTION 

   Since its inception in 2002 the Robotics Club at UCF 

has pushed students and volunteers to the cutting edge of 

technology and innovation. Through annual participation 

in multiple international autonomous robotics 

competitions and outreach programs the club has excelled 

in generating robotic platforms capable of increasingly 

complex tasks. These competitions, primarily hosted by 

the Association for Unmanned Vehicle Systems 

International (AUVSI), include a variety of different 

kinds of platforms such as surface, ground, and 

underwater based vehicles. While upon initial inspection 

it may seem that such platforms operating in completely 

different environments would be vastly different, they are 

instead very similar in accomplishing basic autonomy. 

Since all of the platforms require interaction with their 

environment being able to sense the surroundings 

accurately has proven difficult for the organization to 

manage across multiple platforms without extreme cost. 

Of the many sensors outfitted on the vehicles there is one 

which provides the ample amount of real time data 

necessary for full autonomy.  

   2D Light Detection and Ranging (LIDAR) scanners are 

used on the largest of the platforms fabricated in the 

robotics club. These sensors are great for obstacle 

detection and avoidance. While previous attempts at using 

the raw 2D data from these sensors for map generation 

has proven beneficial observing a 3D world from 2D data 

is never an ideal scenario. It is the goal of this design 

group of computer engineers to enable 3 dimensional 

sensing from the physical rotation of a 2D LIDAR for use 

on these platforms. 

   The Robotics Club at UCF provided a list of 

requirements to which the project should adhere. The 

physical requirements are to occupy less than a cubic foot 

and weigh less than 5 pounds. The 3D scan time should 

be 1.5 seconds per scan or better. The assembly should be 

capable of at least 160° horizontal at least 90° vertical 

F.O.V. Achievable angular resolutions on all axes should 

be at least 0.5° or better. Real time configuration of 

resolutions and update rates should be a feature of the 

project. Power will be provided by a single +12V power 

rail. The maximum power consumption should not exceed 

24 watts and there should be onboard regulation for all 

components with the ability to sustain immediate power 

loss. Interfacing to the system should be accomplished 

through a common PC interface such as Ethernet or USB. 

All connections should be weatherproof and the system 

should be able to sustain long periods of operation. 

   Software requirements should allow for an “always on” 

operational mode. Once the power is primed, the system 

should begin reporting data. The software should also all 

be open sourced and well documented. This will provide 

future engineering students in the robotics club 

opportunity to work on top of the project and leverage it. 

The system is to operate in both indoor and outdoor 

environments with equal performance. 

II. OVERVIEW OF THE PIDAR 

The Pidar will be processing and outputting a very 

large amount of data. It generates points in 3D that are 

representative of the area in front of the system. The laser 

sensor runs on a continuous rotation and will 

communicate to our microcontroller through a serial 

connection. The laser sensor provides points that 

represent a two dimensional plane coincident to the 

horizon of the sensor. This provides us with 1080 points 

of 2D data. This data corresponds to the magnitude and 

angle of the point along a single axis. 

The servo motor is controlled through a separate RS485 

communication method. Using a magnetic rotary encoder, 

the servo is able to provide us with constant feedback of 

its location. Concerning the electrical design of our 

system we must identify the structure required to facilitate 

its intended functions. The microcontroller unit (MCU) 

must accept input from the LIDAR sensor and orientation 

sensor as well as motor feedback. That input will need to 



be interpreted together in order to ensure our resulting 3D 

points are correct. In addition to the sensor input to the 

MCU it must also output the interpreted data to our PC 

for visualization and data analysis. Figure 1 depicts the 

basic electrical subsystem of our project. 

III. 2D LIDAR SENSOR 

 

 

The Hokuyo UTM-30LX 2D laser range finder used in 

our project allows us to scan distances up to 30m away 

with high accuracy. This LIDAR can be controlled 

through the provided SCIP protocol which can handle up 

to 12Mbps of data via a USB connection. The laser 

operates between 10.8 to 13.2 volts. Since our system is 

designed on a 12V rail there are no extra components 

needed to power this device. The UTM-30LX sensor can 

scan a 270 degree arc with an angular resolution of 0.25 

degrees giving us up to 1080 distance values per scan. 

Given the sensor updates at 40 hertz this means our 

system must receive and interpret up to 43,200 distance 

points every second. More specifications can be found in 

Table 1. Each scan follows the same series of steps. In 

reference to Figure 2 step 0 is the first measurement point 

at which the scanning unit is enabled, though no data is 

sent until it reaches step A, the initial measurement step 

of detection range. This step is very important, as it does 

not occur until the UTM-30LX has reached the desired 

starting angle provided by the user. Step B, the sensor 

front step, is reached at the same time for each scan as it 

is at a point normal to the front face of the device. Step C, 

the end point of detection range, is the other user defined 

step. Similar to step B this tells the LIDAR when to stop 

recording the data it is scanning. Steps B and C are very 

important as they allow us to set our start and stop angles 

at any point outside of the dead zone.  

 

 

While the UTM-30LX has a maximum scan angle of 

270 degrees between step A and step D, the LIDAR 

rotates through a 360 degree circle, such that it starts and 

ends at the same point each time. No matter the chosen 

scan angle, one full rotation will always take 25ms. Once 

one full rotation is finished, the UTM-30LX sends out a 

1ms pulse via an open drain transistor output. The pulse is 

used for synchronizing 2D scans and motor position 

readings. The pulsing signal output is shown in Figure 3 

 

 

 

 

 

 

 

 

 
Table 1. Hokuyo UTM-30LX specifications. 

Light Source Laser Diode (λ=905nm) 

Application Indoor/Outdoor 

Accuracy ±50mm 

Angular Resolution 0.25° 

Scanning Range 270° 

Detecting Range 0.1m to 30m 

Scan Time 25ms/scan 

Power 12v DC 

Weight 370g 

IEC Rating IP64 

Figure 2. Hokuyo UTM-30LXscanning operation. 

Figure 3. Hokuyo UTM-30LX open drain output taken 

from an oscilloscope. 

Figure 1. Pidar hardware block diagram. 



 

IV. SCANNING METHOD 

In order to attach the third dimension to our 2D data the 

Hokuyo UTM-30LX 2D scanner needed to be revolved 

about some axis to obtain the required output. Careful 

research into the three different possible configurations 

will enable superior results for real-time use. With the 

goal of implementing this axis of rotation at the point of 

measurement of the scanner, individual analysis of each 

technique will prove beneficial in examining potential 

design difficulties. Exploration of each arrangement will 

reveal not only impending downfalls but also advantages 

to each technique for the intended robotics application. 

Optimization of the data is crucial for data generation as 

frame rate will be critical on a moving platform. The 

available scanning methods are referenced by the naming 

scheme of rolling, pitching, and yawing scans. These 

methods are in reference to the lasers coordinate frame 

with the convention of positive x being forward out in 

front of the sensor, positive y being to the right of the 

sensor and positive z being down below the sensor. The 

selected method for obtaining our third dimension is the 

rolling scan. 

The rolling scan implements a horizontal sweep and 

rotates the sensor around a vertical axis (x axis) 

coincident to the center of the sensor. By rotating the 

sensor in this method there is a single focus point in the 

front of the sensor. The density of measurement data 

collected by the sensor in this configuration is directly in 

front of the sensor. This method is intuitive as it is most 

similar to human vision wherein focus is generally right 

in front of the observer. However the majority of the 

initial scan coverage is offset from the center of the 

device to either side towards the ‘peripherals’. Full 3D 

coverage is only possible via full 180 degree rotation. A 

system which implements the rolling scan methodology 

while retaining a revolution about the origin of scans is 

relatively straight forward. Since the mounting point of 

motion can be placed behind the sensor without 

obstruction of the raw scanning data. With the mounting 

system so close to the majority of the weight in the 

assembly lower torque motors become more viable and 

can therefore lower overall system costs. The laser 

scanner chosen does not have a full 360 view and thus the 

small window behind the sensor provides enough space 

for mounting motors and electronics without hindering 

data capture. Generating a full scan in around a second 

required a fast motor in order to achieve the desired frame 

rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A rolling scan can be implemented one of two ways; 

the first method would require a motor to alternate back 

and forth allowing the scanner to achieve a full view of 

the environment. The second method is to utilize a 

continuous rotation mechanism. This method allows the 

laser to continually move and collect data. We have 

chosen to implement the continuous rotation method in 

order to have the fastest and most consistent collection of 

data. 

There are difficulties to using the continuous rotation 

method. One such difficulty is cable management. In 

order to communicate with our Hokuyo laser sensor, we 

must have high speed communication that is mostly 

reliable. We also have to power the device. In order to 

allow for free movement without sacrificing the data and 

power, we obtained a slip ring connector. The Mercotac 

Model 830 is an electrical slip ring that provides the laser 

with the power and communication that is necessary. The 

Mercotac model 830 slip ring utilizes a mercury channel 

that allows for constant electrical contact while being 

rotated with minimal noise, its specifications are shown in 

Table 2. 

 
Table 2. Mercotac model 830 slip ring specifications. 

Connections 8 

Voltage AC/DC 0-250 

Amp Rating 2@4 / 6@30 

Max Freq MHZ 100 

Contact Resistance <1 milliohm 

Max RPM 200 

Temp Max (F) / Min (F) 140 / -20 

Rotation Torque 1000 gram-cm 

Circuit Separation >25 megaohm 

  

Figure 4. Rolling scan method. 



 

 

 

 

 

 

Since we are utilizing continuous motion driving the 

rotating assembly will require a motor that permits for 

continuous 360 degree rotation and provide accurate 

position feedback. After looking through different servo 

motors, stepper motors, and DC motors, we decided on a 

servo motor. The servo we chose is the Dynamixel MX-

28R servo motor. This servo includes a built in magnetic 

encoder that will allow us to read the real position of the 

motor at any point. The encoder provides a 12 bit 

resolution for a position accuracy of ±0.088 degrees. This 

level of accuracy would allow for our application as well 

as the others to obtain high resolution 3D scanning. This 

servo also has 360 degrees of rotation to allow for a full 

field of vision. This servo has a built in driver that allows 

for the serial multi-drop communication. The onboard 

processor monitors position, load, input voltage, and 

temperature and can report any metric via a single 

request. The communication speed can be adjusted 

between 8000 bps to a maximum of 3Mbps allowing for 

faster reports. This servo works on 12V and has a 

maximum operating current of 1400mA.  

The Dynamixel MX-28R servo will provide motion to 

the rotating mechanism. This servo will provide the 

rotational motion on the x-axis of the laser scan. The 

servo is controlled using a serial connection from our 

microcontroller. It allows for setting of the angular 

position on the motor as well as providing feedback to the 

microcontroller. The MX-28R uses a RS485 

asynchronous serial method of communication. It allows 

for commands to be sent or received at any time and is 

aimed at providing daisy chaining capabilities. 

Communication with the servo is done using an 

instruction packet. In order to read or write data the 

memory address must be referenced. The two sections of 

memory are the EEPROM and RAM. The EEPROM can 

be used to program values on the servo that will not be 

erased power is removed. Alternatively volatile RAM is 

only used for operating values and its values will not 

remain in memory without power. 

In order to utilize the laser, slip ring, and motor, a 

mechanical assembly was required. The assembly must 

handle the wires that come from the laser and attach to the 

slip ring. We had to make sure that the wires were not 

caught in the rotation, as this would have devastating 

consequences for the system. Direct drive from the motor 

to the laser was not possible. In order to rotate the laser, a 

specially designed geared shaft was created as seen in 

Figure 6. This allows the wiring from the Hokuyo laser 

sensor to have power and communication that is 

undisturbed by the motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gear in Figure 6 on one side attaches to a mount 

designed for the 2D laser with the other side attaching to 

the Mercotac slip ring. A matching gear is attached to the 

Dynamixel servo and is placed directly underneath the 

previously described gear. The gears needed to match in 

size exactly so that we could maintain the one-to-one 

alignment with our reported points on the servo. Because 

there are only 2 gears in this assembly, this means the 

reported feedback information is only applicable to the 

servo and not the laser. In code we had to adjust the 

values in order to reflect the changes of the laser; 

essentially considering the inverted gear meshing. 

  The laser mounting assembly was also created 

specifically for the Pidar system. One of the requirements 

was that the power and communication cables could not 

be severed on the Hokuyo laser. In order to maintain the 

cables a special wrapping area was made that allowed the 

cables to be managed in a way that was uniform and that 

also kept them safe from the moving mechanisms.  

 

 

 

Figure 6. Geared cylinder for Hokuyo rotation. 

Figure 5.  Mercotac model 830 continuous electric slip 

ring. 



V. CONTROLLER 

The control system we designed had to be accessible 

and expandable for future members of the UCF Robotics 

Club. It also had to be fast enough and have enough 

memory to process and communicate all of the points in a 

point cloud twice a second. For this task we decided to go 

with a development board called the Raspberry Pi and 

hence the project name “Pidar”. The Raspberry Pi is a 

small embedded computing platform with the design goal 

of bringing computing to students in all parts of the 

world. It is outfitted with a 700 MHz ARM1176JZF-S 

ARM 11 processor featuring the ARMv6 instruction set 

architecture. With 512 MB of ram this computing 

platform is capable of running a full Linux operating 

system. With a power rating of 300 mA and a size of 3.37 

inches by 2.125 inches this microcontroller capable 

computer carries with it a small footprint and a lot of I/O 

potential. With a total of 8 GPIO (General Purpose Input 

Output) pins, I2C busses, and full 3.3v and 5v rails this is 

a great platform for embedded systems. Built into the 

Raspberry Pi is a full 10/100 Mbps Ethernet port, and two 

USB 2.0 ports. The Raspberry Pi is powered from 5V line 

fed through one of the GPIO pins. The benefit of using a 

Linux environment is that the code can be edited and 

compiled on the device. Since the immediate intention of 

this device is to travel to competitions, it may be 

beneficial to have the work environment on hand to make 

any changes necessary. The system will work as 

described however every time without any necessary 

changes. One of the GPIO pins will be attached to the 

Hokuyo synchronous open drain line. This pin will trigger 

an interrupt service routine (ISR) that will be used within 

our code. The serial communication to the Hokuyo will be 

handled directly using a USB port. The motor will be 

controlled using RS-485 protocol through an FTDI chip 

directly connected through the second USB port on the 

Raspberry Pi. This setup has proven to be modular and 

easily manageable. 

VI. SOFTWARE 

The Pidar is written predominantly in C++ using and 

leverages the Qt framework. This language proved to be 

the best for our requirements as it can directly manage 

memory, is object oriented, and is compatible with our 

external libraries. The Pidar relies heavily on 

multithreading for handling all the different devices, 

components, and I/O operations. The Pidar is an event 

driven system. Once the Hokuyo laser sensor signals the 

new scan has completed, our interrupt service routine then 

kicks off a set of functions to complete the process.  

Each of the devices has its own class. The laser class 

implements a call back method to update its values to a 

parent controller. As the laser scans its data the callback is 

called to update. This will allow the class to hold the data 

that is retrieved. The laser class also includes methods to 

initialize the laser. This starts the communication and 

sends the commands necessary to get the data from the 

laser. The laser provides 2 dimensional points in polar 

coordinates representing the magnitude and angle of 

every point. Each of the scans will provide roughly 1080 

points. These values are raw data and cannot provide a 3D 

representation on their own. The laser class also extends 

the Hokuyo library. This provides an easy-to-use interface 

to the custom SCIP protocol implemented by the 

manufacturer in order to communicate with their sensor.  

The motor class allows us to control the Dynamixel. 

This class also extends its manufacturer’s library however 

its initial design was not efficiently implemented for our 

needs. Many changes had to be made in order to get it to 

work effectively and minimize the overhead for threaded 

operation. The motor class allows us to initialize the 

motor set its speed and direction among other 

functionality. It also allows us to read the position. This 

motor class also utilizes the callback architecture to 

handle triggering of new data to a parent class.  

The environment we are using is essentially Linux on a 

chip. The Linux environment is an application level 

operating system intended for users. Access to interrupts 

at the user level in an operating system level was 

necessary for the project and thus a library called 

WiringPi was utilized. This library was developed with 

kernel level access that allows users to have nearly direct 

access to the GPIO pins. The ISR implemented is 

triggered when the Hokuyo 2D laser sensor finishes a 

scan. The high value it outputs lasts 1 millisecond upon 

which our interrupt is triggered on the rising edge. This 

alerts the WiringPi library at the kernel level which then 

triggers a ISR in our program with negligible delay. 

To control the laser, motor, and interrupt classes, we 

developed a controller class. This object creates instances  

 

 
Figure 7. Point interpolation between two motor positions. 



of each of the aforementioned classes and handles 

communication, control, and assembly of all information. 

Since we have continuous motion during capture of the 

2D scans interpolating 3D values must account for this 

curving motion. By monitoring the motor position before 

and after each of the scans it is possible to compute a 

linear regression on every point in the 2D scan. This 

process is outlined in Figure 7. These positions will also 

have to take into account the fact that the motor has been 

reversed due to the rotational assembly. Once each 

rotational position is calculated for every point in a 2D 

scan a 3D data structure is filled with the scan. This data 

structure (vector) is a set of 3 floating point values 

representing the spherical coordinate location of every 

point (R, Theta, Phi). That vector is then placed into a 

queue of scanned points that is ready for transmission. 

Once the control class has successfully completed its task, 

it waits for another interrupt. 

In a completely separate thread, the transmission of 

points is processing the queue. The queue is constantly 

being monitored for new data and once new data is found 

it is quickly transmitted. The original idea was to use TCP 

communication and transmit points upon request. 

However after implementing and testing that method we 

found that it was necessary to use UDP transmission. 

While this method does not guarantee correct receipt of 

the scan data it was found to be the most efficient in 

transmitting the large amounts of 3D data. The 

transmission thread submits the points to a broadcast 

address. This allows anyone on the network to listen to 

the server. Since this method does not need a client to run, 

it is completely independently and will continue to run 

regardless of any problems with any listening client. The 

data that is contained in our structure is converted into a 

char array and sent out byte by byte over the network. On 

the receiving end the client listens for a transmission and 

will reconstruct the structure on the other end. This is not 

ASCII data but is binary data. In order to cut down on 

transmission time the group consciously did not use 

strings as they would have increased overhead. 

In another thread we have a UDP listener. This thread is 

listening for commands on a separate port that can come 

from any of the clients. The commands are received and 

processed to see if they are valid. Once a valid command 

is received it sets a value, if needed, and then sets a flag 

that notifies our main thread that a change has been 

requested. When the processing is complete it will send 

out a return value of “OK” if the command completed 

successfully. If the command is invalid it will return 

“INVALID”. If a value is requested, it will return the 

value. The commands thread works by using ASCII. 

Since this isn’t a time critical transmission and there is 

nowhere near the same amount of data being transmitted, 

it was appropriate to use ASCII strings to send 

transmissions. This also helps with troubleshooting over a 

network as you can easily monitor packet data and look 

for errors in plain text through any packet monitoring 

software.  

The last thread being utilized is the main thread. This 

thread will perform timed routine management of the 

program. It will check that different items are running 

correctly and if not it will attempt to correct them. Due to 

the use of our control class, if we find that a thread is 

misbehaving, we restart that thread and fix the problem. 

The main thread also handles the altering of the devices. 

Since the main thread holds the instance of our control 

class, it has access to perform the different tasks capable 

of each of the devices. It can report the speed, temperature 

and position of the devices and can change the motor 

speed. Since we cannot afford to risk the client 

overpowering our control thread, we have it on a timed 

check. The system is using a last in first out method to set 

the server controls. All controls can be changed once per 

cycle. The cycle speed can be configured by the user. 

The configuration file is stored on the server in a 

plaintext document in using XML formatting. The 

document allows the user to configure the default settings 

of the Pidar without having to recompile or even rerun the 

program. This will allow users to be able to SSH into the 

Pidar and edit it as needed. Once the XML has been read, 

client commands will override those for the duration of its 

uptime. The Raspberry Pi is configured to automatically 

boot up once it receives power. The system is logged in 

and the application is executed. This gives users the 

ability to have quick uptimes upon providing power. In 

order to tell the system to safely shutdown we are 

utilizing an external logic circuit that will tell our 

Raspberry Pi to shut down. Upon operating system 

shutdown the external logic will remove the power from 

the Raspberry Pi entirely. This system is using an Atmel 

chip and communicates via two of the GPIO pins. 

The client application is independent of the Pidar 

server. The application is also written using C++ and also 

leverages the Qt framework. Qt is cross-platform GUI 

builder and allows for design and deployment of 

applications across different operating systems including 

Linux, Windows, and Mac. The client application 

provides an interface to the Pidar as well as visualization 

of its Pidar output. Since the Pidar outputs a single scan at 

a time, it is up to the client to reconstruct the full 3D point 

cloud. We have developed our client application to render 

the visualization in multiple ways. The first method is 

clear the points off the screen as soon as soon as a full 

scan has completed. This will only show the user a single 



2D scan. With this method there are fewer points, roughly 

25,000, that are shown at any time. This means that the 

image to the user’s eye may seem sparse. To a robotic 

vision application, it will still suffice to identify objects. 

Users can use other modes that will continuously add 

points to the frame. This method works very well for 

static areas with few moving objects. The system can then 

create a nearly complete 3D representation of the 

environment by obtaining millions of points to construct. 

Another viewing method available in the client allows for 

viewing of a single scan at a time. This only shows the 

one or two scans that were received last by the Pidar. This 

enables the user to visually see what the scanner is 

reading and demonstrates how it works. 

The colorization of the imagery is done using RGB data 

that corresponds with the distance of the point in 

reference to the Pidar. This is a technique commonly 

implemented in heat maps but can work equally well for 

visualizing distances. This depth coloring allows the user 

to distinguish the different objects from one another as it 

gives contrast to the image. The client also provides the 

option to visualize points in only a single color. This 

gives the user the ability to just see the shapes of the 

objects and can give a cleaner looking image if the user 

wants to just see edges. Additionally the client can utilize 

RGB data that is collected from an attached webcam. The 

camera and the Pidar need to be aligned and calibrated 

ahead of time in order to perform this task correctly, but 

can allows the user to overlay the image on top of the 

point cloud and view real imagery in 3D. 

The client application utilizes a library called the 

Visualization Tool Kit (VTK). VTK includes tools for 

displaying 3D environments, objects, and meshes that can 

also represent points. This library is the underlying 

framework for our visualizer in the client application and 

can allow the user to interact with the point cloud from 

the Pidar. By moving the visualizer window users can see 

the scanned environment from all possible viewpoints. 

VTK requires us to format our data in a predefined way 

so that the image can be displayed using their visualizer. 

The visualizer works by displaying points using their X, 

Y and Z values. However, the data collected form the 

Pidar is not in that form and thus must be converted for 

display purposes. The distance of the point is easily 

known when using the spherical data format. The distance 

to any object is provided without any further calculation. 

The conversion of points can be done by applying 

trigonometry. These computations can be seen below. 

 

𝑋 = 𝑅 ∗ sin(𝜃) ∗ cos(𝜑) 
𝑌 = 𝑅 ∗ sin(𝜃) ∗ sin(𝜑) 

𝑍 = 𝑅 ∗ cos(𝜃) 
 

Before the point cloud can be finalized, an RGB value 

must be applied to each point. Since each point is 

individually colored, it allows us to show a gradient to 

represent distance. This is performed by an RGB selection 

algorithm based on distance. Alternatively, this is where 

the live image representation will be set. The webcam 

image is processed into a data array. Each pixel of the 

image will correspond to a location and contain an RGB 

value that represents that place in real space. This RGB 

value is taken from the webcam image and placed into the 

point cloud point RGB field. This enables us to see true 

images in 3D. 

Additional options in the client allow the user to pause 

the image so they can further inspect the point cloud. This  

 

 

method will disregard any of the point clouds that have 

come in since. A clearing option allows the user to clear 

the existing point cloud at any time and refresh it with 

only new data. The speed can be adjusted of the Pidar by 

adjusting a slider on the client. The range is from 1 to 60 

rpm. This will allow the user to fine tune the speed to 

Figure 8. Spherical representation of a 3D point on 

the Pidar. 

Figure 9. Early version of RGB point cloud 

representation. 



balance between refresh rate and resolution. The client 

that has been created is only a test bed application. The 

actual client design for the end use will have to be 

integrated onto the autonomous robotic application. Data 

will then have to be processed and analyzed to allow for 

navigation and identification of objects. 

VII. HARDWARE 

  The Pidar is designed to be a weatherproof system. The 

box was custom built to house our components and allow 

access to our cables. The laser, motor, and controller 

mounts were designed in Solidworks and all printed using 

a Makerbot 3D printer using PLA plastic. This allows us 

to have a enclosure that is impermeable to rain and harsh 

weather. The Hokuyo 2D laser is weather proofed already 

and no modification was necessary. 

The electrical system is powered with a 12V input. This 

will ideally be a battery system provided by the host. The 

Pidar uses two separate power systems. The laser and 

motor are both powered directly through via the +12V 

input. It is assumed that the power input is a regulated 

clean +12VDC power supply. The Raspberry Pi is 

powered using a 5VDC input. So we have used a 

LMZ14203 switching regulator step down module. The 

part has been found capable of driving a 3A load which is 

sufficient for our power requirement of 6.75 Watts on the 

5V rail. The IC is capable of handling from 6V to 42V 

input and is available in a TO-PMOD-7 package. This 

package type has 7 large pins all oriented on the same 

side of the plastic housing making it very easy to surface 

mount onto a PCB. 

 

VIII. CONCLUSION 

The Pidar system is a complex system which provided 

us many design hurdles to overcome. The 3D data that is 

generated will prove to be most beneficial to its intended 

end use and provides a terrific framework for future 

designs. 
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 Figure 10. Power switching circuit. 


