
PIDAR:

 3D Laser Range Finder

Andrew Watson, Jonathan Ulrich

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The Pidar provides 3 dimensional points to a
client that represent a 3 dimensional environment. An
infrared laser sensor provides distance data along a Z axis

and angular data on an x axis. A motor rotates the laser
mechanism around a Y axis; this supplies the system with
the necessary data in order to create a 3D point cloud

representation of an environment. The Pidar utilizes a Linux
operating system in order to manage the flow of information
from the external sensors to an independent client.

Index Terms — Client-Server Systems, Image Generation,
Laser Radar, Systems Software.

I. INTRODUCTION

 Since its inception in 2002 the Robotics Club at UCF

has pushed students and volunteers to the cutting edge of

technology and innovation. Through annual participation

in multiple international autonomous robotics

competitions and outreach programs the club has excelled

in generating robotic platforms capable of increasingly

complex tasks. These competitions, primarily hosted by

the Association for Unmanned Vehicle Systems

International (AUVSI), include a variety of different

kinds of platforms such as surface, ground, and

underwater based vehicles. While upon initial inspection

it may seem that such platforms operating in completely

different environments would be vastly different, they are

instead very similar in accomplishing basic autonomy.

Since all of the platforms require interaction with their

environment being able to sense the surroundings

accurately has proven difficult for the organization to

manage across multiple platforms without extreme cost.

Of the many sensors outfitted on the vehicles there is one

which provides the ample amount of real time data

necessary for full autonomy.

 2D Light Detection and Ranging (LIDAR) scanners are

used on the largest of the platforms fabricated in the

robotics club. These sensors are great for obstacle

detection and avoidance. While previous attempts at using

the raw 2D data from these sensors for map generation

has proven beneficial observing a 3D world from 2D data

is never an ideal scenario. It is the goal of this design

group of computer engineers to enable 3 dimensional

sensing from the physical rotation of a 2D LIDAR for use

on these platforms.

 The Robotics Club at UCF provided a list of

requirements to which the project should adhere. The

physical requirements are to occupy less than a cubic foot

and weigh less than 5 pounds. The 3D scan time should

be 1.5 seconds per scan or better. The assembly should be

capable of at least 160° horizontal at least 90° vertical

F.O.V. Achievable angular resolutions on all axes should

be at least 0.5° or better. Real time configuration of

resolutions and update rates should be a feature of the

project. Power will be provided by a single +12V power

rail. The maximum power consumption should not exceed

24 watts and there should be onboard regulation for all

components with the ability to sustain immediate power

loss. Interfacing to the system should be accomplished

through a common PC interface such as Ethernet or USB.

All connections should be weatherproof and the system

should be able to sustain long periods of operation.

 Software requirements should allow for an “always on”

operational mode. Once the power is primed, the system

should begin reporting data. The software should also all

be open sourced and well documented. This will provide

future engineering students in the robotics club

opportunity to work on top of the project and leverage it.

The system is to operate in both indoor and outdoor

environments with equal performance.

II. OVERVIEW OF THE PIDAR

The Pidar will be processing and outputting a very

large amount of data. It generates points in 3D that are

representative of the area in front of the system. The laser

sensor runs on a continuous rotation and will

communicate to our microcontroller through a serial

connection. The laser sensor provides points that

represent a two dimensional plane coincident to the

horizon of the sensor. This provides us with 1080 points

of 2D data. This data corresponds to the magnitude and

angle of the point along a single axis.

The servo motor is controlled through a separate RS485

communication method. Using a magnetic rotary encoder,

the servo is able to provide us with constant feedback of

its location. Concerning the electrical design of our

system we must identify the structure required to facilitate

its intended functions. The microcontroller unit (MCU)

must accept input from the LIDAR sensor and orientation

sensor as well as motor feedback. That input will need to

be interpreted together in order to ensure our resulting 3D

points are correct. In addition to the sensor input to the

MCU it must also output the interpreted data to our PC

for visualization and data analysis. Figure 1 depicts the

basic electrical subsystem of our project.

III. 2D LIDAR SENSOR

The Hokuyo UTM-30LX 2D laser range finder used in

our project allows us to scan distances up to 30m away

with high accuracy. This LIDAR can be controlled

through the provided SCIP protocol which can handle up

to 12Mbps of data via a USB connection. The laser

operates between 10.8 to 13.2 volts. Since our system is

designed on a 12V rail there are no extra components

needed to power this device. The UTM-30LX sensor can

scan a 270 degree arc with an angular resolution of 0.25

degrees giving us up to 1080 distance values per scan.

Given the sensor updates at 40 hertz this means our

system must receive and interpret up to 43,200 distance

points every second. More specifications can be found in

Table 1. Each scan follows the same series of steps. In

reference to Figure 2 step 0 is the first measurement point

at which the scanning unit is enabled, though no data is

sent until it reaches step A, the initial measurement step

of detection range. This step is very important, as it does

not occur until the UTM-30LX has reached the desired

starting angle provided by the user. Step B, the sensor

front step, is reached at the same time for each scan as it

is at a point normal to the front face of the device. Step C,

the end point of detection range, is the other user defined

step. Similar to step B this tells the LIDAR when to stop

recording the data it is scanning. Steps B and C are very

important as they allow us to set our start and stop angles

at any point outside of the dead zone.

While the UTM-30LX has a maximum scan angle of

270 degrees between step A and step D, the LIDAR

rotates through a 360 degree circle, such that it starts and

ends at the same point each time. No matter the chosen

scan angle, one full rotation will always take 25ms. Once

one full rotation is finished, the UTM-30LX sends out a

1ms pulse via an open drain transistor output. The pulse is

used for synchronizing 2D scans and motor position

readings. The pulsing signal output is shown in Figure 3

Table 1. Hokuyo UTM-30LX specifications.

Light Source Laser Diode (λ=905nm)

Application Indoor/Outdoor

Accuracy ±50mm

Angular Resolution 0.25°

Scanning Range 270°

Detecting Range 0.1m to 30m

Scan Time 25ms/scan

Power 12v DC

Weight 370g

IEC Rating IP64

Figure 2. Hokuyo UTM-30LXscanning operation.

Figure 3. Hokuyo UTM-30LX open drain output taken

from an oscilloscope.

Figure 1. Pidar hardware block diagram.

IV. SCANNING METHOD

In order to attach the third dimension to our 2D data the

Hokuyo UTM-30LX 2D scanner needed to be revolved

about some axis to obtain the required output. Careful

research into the three different possible configurations

will enable superior results for real-time use. With the

goal of implementing this axis of rotation at the point of

measurement of the scanner, individual analysis of each

technique will prove beneficial in examining potential

design difficulties. Exploration of each arrangement will

reveal not only impending downfalls but also advantages

to each technique for the intended robotics application.

Optimization of the data is crucial for data generation as

frame rate will be critical on a moving platform. The

available scanning methods are referenced by the naming

scheme of rolling, pitching, and yawing scans. These

methods are in reference to the lasers coordinate frame

with the convention of positive x being forward out in

front of the sensor, positive y being to the right of the

sensor and positive z being down below the sensor. The

selected method for obtaining our third dimension is the

rolling scan.

The rolling scan implements a horizontal sweep and

rotates the sensor around a vertical axis (x axis)

coincident to the center of the sensor. By rotating the

sensor in this method there is a single focus point in the

front of the sensor. The density of measurement data

collected by the sensor in this configuration is directly in

front of the sensor. This method is intuitive as it is most

similar to human vision wherein focus is generally right

in front of the observer. However the majority of the

initial scan coverage is offset from the center of the

device to either side towards the ‘peripherals’. Full 3D

coverage is only possible via full 180 degree rotation. A

system which implements the rolling scan methodology

while retaining a revolution about the origin of scans is

relatively straight forward. Since the mounting point of

motion can be placed behind the sensor without

obstruction of the raw scanning data. With the mounting

system so close to the majority of the weight in the

assembly lower torque motors become more viable and

can therefore lower overall system costs. The laser

scanner chosen does not have a full 360 view and thus the

small window behind the sensor provides enough space

for mounting motors and electronics without hindering

data capture. Generating a full scan in around a second

required a fast motor in order to achieve the desired frame

rates.

A rolling scan can be implemented one of two ways;

the first method would require a motor to alternate back

and forth allowing the scanner to achieve a full view of

the environment. The second method is to utilize a

continuous rotation mechanism. This method allows the

laser to continually move and collect data. We have

chosen to implement the continuous rotation method in

order to have the fastest and most consistent collection of

data.

There are difficulties to using the continuous rotation

method. One such difficulty is cable management. In

order to communicate with our Hokuyo laser sensor, we

must have high speed communication that is mostly

reliable. We also have to power the device. In order to

allow for free movement without sacrificing the data and

power, we obtained a slip ring connector. The Mercotac

Model 830 is an electrical slip ring that provides the laser

with the power and communication that is necessary. The

Mercotac model 830 slip ring utilizes a mercury channel

that allows for constant electrical contact while being

rotated with minimal noise, its specifications are shown in

Table 2.

Table 2. Mercotac model 830 slip ring specifications.

Connections 8

Voltage AC/DC 0-250

Amp Rating 2@4 / 6@30

Max Freq MHZ 100

Contact Resistance <1 milliohm

Max RPM 200

Temp Max (F) / Min (F) 140 / -20

Rotation Torque 1000 gram-cm

Circuit Separation >25 megaohm

Figure 4. Rolling scan method.

Since we are utilizing continuous motion driving the

rotating assembly will require a motor that permits for

continuous 360 degree rotation and provide accurate

position feedback. After looking through different servo

motors, stepper motors, and DC motors, we decided on a

servo motor. The servo we chose is the Dynamixel MX-

28R servo motor. This servo includes a built in magnetic

encoder that will allow us to read the real position of the

motor at any point. The encoder provides a 12 bit

resolution for a position accuracy of ±0.088 degrees. This

level of accuracy would allow for our application as well

as the others to obtain high resolution 3D scanning. This

servo also has 360 degrees of rotation to allow for a full

field of vision. This servo has a built in driver that allows

for the serial multi-drop communication. The onboard

processor monitors position, load, input voltage, and

temperature and can report any metric via a single

request. The communication speed can be adjusted

between 8000 bps to a maximum of 3Mbps allowing for

faster reports. This servo works on 12V and has a

maximum operating current of 1400mA.

The Dynamixel MX-28R servo will provide motion to

the rotating mechanism. This servo will provide the

rotational motion on the x-axis of the laser scan. The

servo is controlled using a serial connection from our

microcontroller. It allows for setting of the angular

position on the motor as well as providing feedback to the

microcontroller. The MX-28R uses a RS485

asynchronous serial method of communication. It allows

for commands to be sent or received at any time and is

aimed at providing daisy chaining capabilities.

Communication with the servo is done using an

instruction packet. In order to read or write data the

memory address must be referenced. The two sections of

memory are the EEPROM and RAM. The EEPROM can

be used to program values on the servo that will not be

erased power is removed. Alternatively volatile RAM is

only used for operating values and its values will not

remain in memory without power.

In order to utilize the laser, slip ring, and motor, a

mechanical assembly was required. The assembly must

handle the wires that come from the laser and attach to the

slip ring. We had to make sure that the wires were not

caught in the rotation, as this would have devastating

consequences for the system. Direct drive from the motor

to the laser was not possible. In order to rotate the laser, a

specially designed geared shaft was created as seen in

Figure 6. This allows the wiring from the Hokuyo laser

sensor to have power and communication that is

undisturbed by the motion.

The gear in Figure 6 on one side attaches to a mount

designed for the 2D laser with the other side attaching to

the Mercotac slip ring. A matching gear is attached to the

Dynamixel servo and is placed directly underneath the

previously described gear. The gears needed to match in

size exactly so that we could maintain the one-to-one

alignment with our reported points on the servo. Because

there are only 2 gears in this assembly, this means the

reported feedback information is only applicable to the

servo and not the laser. In code we had to adjust the

values in order to reflect the changes of the laser;

essentially considering the inverted gear meshing.

 The laser mounting assembly was also created

specifically for the Pidar system. One of the requirements

was that the power and communication cables could not

be severed on the Hokuyo laser. In order to maintain the

cables a special wrapping area was made that allowed the

cables to be managed in a way that was uniform and that

also kept them safe from the moving mechanisms.

Figure 6. Geared cylinder for Hokuyo rotation.

Figure 5. Mercotac model 830 continuous electric slip

ring.

V. CONTROLLER

The control system we designed had to be accessible

and expandable for future members of the UCF Robotics

Club. It also had to be fast enough and have enough

memory to process and communicate all of the points in a

point cloud twice a second. For this task we decided to go

with a development board called the Raspberry Pi and

hence the project name “Pidar”. The Raspberry Pi is a

small embedded computing platform with the design goal

of bringing computing to students in all parts of the

world. It is outfitted with a 700 MHz ARM1176JZF-S

ARM 11 processor featuring the ARMv6 instruction set

architecture. With 512 MB of ram this computing

platform is capable of running a full Linux operating

system. With a power rating of 300 mA and a size of 3.37

inches by 2.125 inches this microcontroller capable

computer carries with it a small footprint and a lot of I/O

potential. With a total of 8 GPIO (General Purpose Input

Output) pins, I2C busses, and full 3.3v and 5v rails this is

a great platform for embedded systems. Built into the

Raspberry Pi is a full 10/100 Mbps Ethernet port, and two

USB 2.0 ports. The Raspberry Pi is powered from 5V line

fed through one of the GPIO pins. The benefit of using a

Linux environment is that the code can be edited and

compiled on the device. Since the immediate intention of

this device is to travel to competitions, it may be

beneficial to have the work environment on hand to make

any changes necessary. The system will work as

described however every time without any necessary

changes. One of the GPIO pins will be attached to the

Hokuyo synchronous open drain line. This pin will trigger

an interrupt service routine (ISR) that will be used within

our code. The serial communication to the Hokuyo will be

handled directly using a USB port. The motor will be

controlled using RS-485 protocol through an FTDI chip

directly connected through the second USB port on the

Raspberry Pi. This setup has proven to be modular and

easily manageable.

VI. SOFTWARE

The Pidar is written predominantly in C++ using and

leverages the Qt framework. This language proved to be

the best for our requirements as it can directly manage

memory, is object oriented, and is compatible with our

external libraries. The Pidar relies heavily on

multithreading for handling all the different devices,

components, and I/O operations. The Pidar is an event

driven system. Once the Hokuyo laser sensor signals the

new scan has completed, our interrupt service routine then

kicks off a set of functions to complete the process.

Each of the devices has its own class. The laser class

implements a call back method to update its values to a

parent controller. As the laser scans its data the callback is

called to update. This will allow the class to hold the data

that is retrieved. The laser class also includes methods to

initialize the laser. This starts the communication and

sends the commands necessary to get the data from the

laser. The laser provides 2 dimensional points in polar

coordinates representing the magnitude and angle of

every point. Each of the scans will provide roughly 1080

points. These values are raw data and cannot provide a 3D

representation on their own. The laser class also extends

the Hokuyo library. This provides an easy-to-use interface

to the custom SCIP protocol implemented by the

manufacturer in order to communicate with their sensor.

The motor class allows us to control the Dynamixel.

This class also extends its manufacturer’s library however

its initial design was not efficiently implemented for our

needs. Many changes had to be made in order to get it to

work effectively and minimize the overhead for threaded

operation. The motor class allows us to initialize the

motor set its speed and direction among other

functionality. It also allows us to read the position. This

motor class also utilizes the callback architecture to

handle triggering of new data to a parent class.

The environment we are using is essentially Linux on a

chip. The Linux environment is an application level

operating system intended for users. Access to interrupts

at the user level in an operating system level was

necessary for the project and thus a library called

WiringPi was utilized. This library was developed with

kernel level access that allows users to have nearly direct

access to the GPIO pins. The ISR implemented is

triggered when the Hokuyo 2D laser sensor finishes a

scan. The high value it outputs lasts 1 millisecond upon

which our interrupt is triggered on the rising edge. This

alerts the WiringPi library at the kernel level which then

triggers a ISR in our program with negligible delay.

To control the laser, motor, and interrupt classes, we

developed a controller class. This object creates instances

Figure 7. Point interpolation between two motor positions.

of each of the aforementioned classes and handles

communication, control, and assembly of all information.

Since we have continuous motion during capture of the

2D scans interpolating 3D values must account for this

curving motion. By monitoring the motor position before

and after each of the scans it is possible to compute a

linear regression on every point in the 2D scan. This

process is outlined in Figure 7. These positions will also

have to take into account the fact that the motor has been

reversed due to the rotational assembly. Once each

rotational position is calculated for every point in a 2D

scan a 3D data structure is filled with the scan. This data

structure (vector) is a set of 3 floating point values

representing the spherical coordinate location of every

point (R, Theta, Phi). That vector is then placed into a

queue of scanned points that is ready for transmission.

Once the control class has successfully completed its task,

it waits for another interrupt.

In a completely separate thread, the transmission of

points is processing the queue. The queue is constantly

being monitored for new data and once new data is found

it is quickly transmitted. The original idea was to use TCP

communication and transmit points upon request.

However after implementing and testing that method we

found that it was necessary to use UDP transmission.

While this method does not guarantee correct receipt of

the scan data it was found to be the most efficient in

transmitting the large amounts of 3D data. The

transmission thread submits the points to a broadcast

address. This allows anyone on the network to listen to

the server. Since this method does not need a client to run,

it is completely independently and will continue to run

regardless of any problems with any listening client. The

data that is contained in our structure is converted into a

char array and sent out byte by byte over the network. On

the receiving end the client listens for a transmission and

will reconstruct the structure on the other end. This is not

ASCII data but is binary data. In order to cut down on

transmission time the group consciously did not use

strings as they would have increased overhead.

In another thread we have a UDP listener. This thread is

listening for commands on a separate port that can come

from any of the clients. The commands are received and

processed to see if they are valid. Once a valid command

is received it sets a value, if needed, and then sets a flag

that notifies our main thread that a change has been

requested. When the processing is complete it will send

out a return value of “OK” if the command completed

successfully. If the command is invalid it will return

“INVALID”. If a value is requested, it will return the

value. The commands thread works by using ASCII.

Since this isn’t a time critical transmission and there is

nowhere near the same amount of data being transmitted,

it was appropriate to use ASCII strings to send

transmissions. This also helps with troubleshooting over a

network as you can easily monitor packet data and look

for errors in plain text through any packet monitoring

software.

The last thread being utilized is the main thread. This

thread will perform timed routine management of the

program. It will check that different items are running

correctly and if not it will attempt to correct them. Due to

the use of our control class, if we find that a thread is

misbehaving, we restart that thread and fix the problem.

The main thread also handles the altering of the devices.

Since the main thread holds the instance of our control

class, it has access to perform the different tasks capable

of each of the devices. It can report the speed, temperature

and position of the devices and can change the motor

speed. Since we cannot afford to risk the client

overpowering our control thread, we have it on a timed

check. The system is using a last in first out method to set

the server controls. All controls can be changed once per

cycle. The cycle speed can be configured by the user.

The configuration file is stored on the server in a

plaintext document in using XML formatting. The

document allows the user to configure the default settings

of the Pidar without having to recompile or even rerun the

program. This will allow users to be able to SSH into the

Pidar and edit it as needed. Once the XML has been read,

client commands will override those for the duration of its

uptime. The Raspberry Pi is configured to automatically

boot up once it receives power. The system is logged in

and the application is executed. This gives users the

ability to have quick uptimes upon providing power. In

order to tell the system to safely shutdown we are

utilizing an external logic circuit that will tell our

Raspberry Pi to shut down. Upon operating system

shutdown the external logic will remove the power from

the Raspberry Pi entirely. This system is using an Atmel

chip and communicates via two of the GPIO pins.

The client application is independent of the Pidar

server. The application is also written using C++ and also

leverages the Qt framework. Qt is cross-platform GUI

builder and allows for design and deployment of

applications across different operating systems including

Linux, Windows, and Mac. The client application

provides an interface to the Pidar as well as visualization

of its Pidar output. Since the Pidar outputs a single scan at

a time, it is up to the client to reconstruct the full 3D point

cloud. We have developed our client application to render

the visualization in multiple ways. The first method is

clear the points off the screen as soon as soon as a full

scan has completed. This will only show the user a single

2D scan. With this method there are fewer points, roughly

25,000, that are shown at any time. This means that the

image to the user’s eye may seem sparse. To a robotic

vision application, it will still suffice to identify objects.

Users can use other modes that will continuously add

points to the frame. This method works very well for

static areas with few moving objects. The system can then

create a nearly complete 3D representation of the

environment by obtaining millions of points to construct.

Another viewing method available in the client allows for

viewing of a single scan at a time. This only shows the

one or two scans that were received last by the Pidar. This

enables the user to visually see what the scanner is

reading and demonstrates how it works.

The colorization of the imagery is done using RGB data

that corresponds with the distance of the point in

reference to the Pidar. This is a technique commonly

implemented in heat maps but can work equally well for

visualizing distances. This depth coloring allows the user

to distinguish the different objects from one another as it

gives contrast to the image. The client also provides the

option to visualize points in only a single color. This

gives the user the ability to just see the shapes of the

objects and can give a cleaner looking image if the user

wants to just see edges. Additionally the client can utilize

RGB data that is collected from an attached webcam. The

camera and the Pidar need to be aligned and calibrated

ahead of time in order to perform this task correctly, but

can allows the user to overlay the image on top of the

point cloud and view real imagery in 3D.

The client application utilizes a library called the

Visualization Tool Kit (VTK). VTK includes tools for

displaying 3D environments, objects, and meshes that can

also represent points. This library is the underlying

framework for our visualizer in the client application and

can allow the user to interact with the point cloud from

the Pidar. By moving the visualizer window users can see

the scanned environment from all possible viewpoints.

VTK requires us to format our data in a predefined way

so that the image can be displayed using their visualizer.

The visualizer works by displaying points using their X,

Y and Z values. However, the data collected form the

Pidar is not in that form and thus must be converted for

display purposes. The distance of the point is easily

known when using the spherical data format. The distance

to any object is provided without any further calculation.

The conversion of points can be done by applying

trigonometry. These computations can be seen below.

𝑋 = 𝑅 ∗ sin(𝜃) ∗ cos(𝜑)
𝑌 = 𝑅 ∗ sin(𝜃) ∗ sin(𝜑)

𝑍 = 𝑅 ∗ cos(𝜃)

Before the point cloud can be finalized, an RGB value

must be applied to each point. Since each point is

individually colored, it allows us to show a gradient to

represent distance. This is performed by an RGB selection

algorithm based on distance. Alternatively, this is where

the live image representation will be set. The webcam

image is processed into a data array. Each pixel of the

image will correspond to a location and contain an RGB

value that represents that place in real space. This RGB

value is taken from the webcam image and placed into the

point cloud point RGB field. This enables us to see true

images in 3D.

Additional options in the client allow the user to pause

the image so they can further inspect the point cloud. This

method will disregard any of the point clouds that have

come in since. A clearing option allows the user to clear

the existing point cloud at any time and refresh it with

only new data. The speed can be adjusted of the Pidar by

adjusting a slider on the client. The range is from 1 to 60

rpm. This will allow the user to fine tune the speed to

Figure 8. Spherical representation of a 3D point on

the Pidar.

Figure 9. Early version of RGB point cloud

representation.

balance between refresh rate and resolution. The client

that has been created is only a test bed application. The

actual client design for the end use will have to be

integrated onto the autonomous robotic application. Data

will then have to be processed and analyzed to allow for

navigation and identification of objects.

VII. HARDWARE

 The Pidar is designed to be a weatherproof system. The

box was custom built to house our components and allow

access to our cables. The laser, motor, and controller

mounts were designed in Solidworks and all printed using

a Makerbot 3D printer using PLA plastic. This allows us

to have a enclosure that is impermeable to rain and harsh

weather. The Hokuyo 2D laser is weather proofed already

and no modification was necessary.

The electrical system is powered with a 12V input. This

will ideally be a battery system provided by the host. The

Pidar uses two separate power systems. The laser and

motor are both powered directly through via the +12V

input. It is assumed that the power input is a regulated

clean +12VDC power supply. The Raspberry Pi is

powered using a 5VDC input. So we have used a

LMZ14203 switching regulator step down module. The

part has been found capable of driving a 3A load which is

sufficient for our power requirement of 6.75 Watts on the

5V rail. The IC is capable of handling from 6V to 42V

input and is available in a TO-PMOD-7 package. This

package type has 7 large pins all oriented on the same

side of the plastic housing making it very easy to surface

mount onto a PCB.

VIII. CONCLUSION

The Pidar system is a complex system which provided

us many design hurdles to overcome. The 3D data that is

generated will prove to be most beneficial to its intended

end use and provides a terrific framework for future

designs.

IX. ENGINEERS

Andrew Watson

Andrew is a computer

engineering student at the

University of Central Florida.

Currently employed as a research

assistant his career interests

include embedded and autonomous

systems development.

Jonathan Ulrich

Jonathan is a computer

engineering student. He currently

is employed by the University of

Central Florida. He will one day

open an engineering firm and save

the world.

X. ACKNOWLEDGEMENTS

 We wish to thank the UCF faculty and the UCF

Robotics Club for all of their support and guidance.

 XI. REFERENCES

 [1] Oliver Wulf, Bernado Wagner, “Fast 3D Scanning Methods
for Laser Measurement Systems” Proceedings of the
International Conference on Control Systems and
Computer Science, vol. 1, pp. 312-317, July 2003.

 Figure 10. Power switching circuit.

